Center for Machine Learning and Intelligent Systems
About  Citation Policy  Donate a Data Set  Contact


Repository Web            Google
View ALL Data Sets

Browse Through:

Default Task

Classification (23)
Regression (7)
Clustering (2)
Other (2)

Attribute Type

Categorical (2)
Numerical (27)
Mixed (3)

Data Type - Undo

Multivariate (33)
Univariate (0)
Sequential (1)
Time-Series (5)
Text (1)
Domain-Theory (2)
Other (5)

Area - Undo

Life Sciences (67)
Physical Sciences (33)
CS / Engineering (54)
Social Sciences (16)
Business (10)
Game (7)
Other (37)

# Attributes

Less than 10 (7)
10 to 100 (20)
Greater than 100 (6)

# Instances

Less than 100 (2)
100 to 1000 (15)
Greater than 1000 (16)

Format Type

Matrix (27)
Non-Matrix (6)

33 Data Sets

Table View  List View


1. Amazon Commerce reviews set: The dataset is used for authorship identification in online Writeprint which is a new research field of pattern recognition.

2. Musk (Version 1): The goal is to learn to predict whether new molecules will be musks or non-musks

3. Musk (Version 2): The goal is to learn to predict whether new molecules will be musks or non-musks

4. Weight Lifting Exercises monitored with Inertial Measurement Units: Six young health subjects were asked to perform 5 variations of the biceps curl weight lifting exercise. One of the variations is the one predicted by the health professional.

5. Urban Land Cover: Classification of urban land cover using high resolution aerial imagery. Intended to assist sustainable urban planning efforts.

6. Low Resolution Spectrometer: From IRAS data -- NASA Ames Research Center

7. Robot Execution Failures: This dataset contains force and torque measurements on a robot after failure detection. Each failure is characterized by 15 force/torque samples collected at regular time intervals

8. Ozone Level Detection: Two ground ozone level data sets are included in this collection. One is the eight hour peak set (eighthr.data), the other is the one hour peak set (onehr.data). Those data were collected from 1998 to 2004 at the Houston, Galveston and Brazoria area.

9. Connectionist Bench (Sonar, Mines vs. Rocks): The task is to train a network to discriminate between sonar signals bounced off a metal cylinder and those bounced off a roughly cylindrical rock.

10. MiniBooNE particle identification: This dataset is taken from the MiniBooNE experiment and is used to distinguish electron neutrinos (signal) from muon neutrinos (background).

11. Waveform Database Generator (Version 2): CART book's waveform domains

12. Cylinder Bands: Used in decision tree induction for mitigating process delays known as "cylinder bands" in rotogravure printing

13. Annealing: Steel annealing data

14. Water Treatment Plant: Multiple classes predict plant state

15. Statlog (Landsat Satellite): Multi-spectral values of pixels in 3x3 neighbourhoods in a satellite image, and the classification associated with the central pixel in each neighbourhood

16. Ionosphere: Classification of radar returns from the ionosphere

17. Steel Plates Faults: A dataset of steel plates’ faults, classified into 7 different types. The goal was to train machine learning for automatic pattern recognition.

18. Waveform Database Generator (Version 1): CART book's waveform domains

19. Climate Model Simulation Crashes: Given Latin hypercube samples of 18 climate model input parameter values, predict climate model simulation crashes and determine the parameter value combinations that cause the failures.

20. Coil 1999 Competition Data: This data set is from the 1999 Computational Intelligence and Learning (COIL) competition. The data contains measurements of river chemical concentrations and algae densities.

21. Wine: Using chemical analysis determine the origin of wines

22. Forest Fires: This is a difficult regression task, where the aim is to predict the burned area of forest fires, in the northeast region of Portugal, by using meteorological and other data (see details at: http://www.dsi.uminho.pt/~pcortez/forestfires).

23. MAGIC Gamma Telescope: Data are MC generated to simulate registration of high energy gamma particles in an atmospheric Cherenkov telescope

24. Glass Identification: From USA Forensic Science Service; 6 types of glass; defined in terms of their oxide content (i.e. Na, Fe, K, etc)

25. Solar Flare: Each class attribute counts the number of solar flares of a certain class that occur in a 24 hour period

26. Cloud: Little Documentation

27. Statlog (Shuttle): The shuttle dataset contains 9 attributes all of which are numerical. Approximately 80% of the data belongs to class 1

28. Concrete Compressive Strength: Concrete is the most important material in civil engineering. The concrete compressive strength is a highly nonlinear function of age and ingredients.

29. Individual household electric power consumption: Measurements of electric power consumption in one household with a one-minute sampling rate over a period of almost 4 years. Different electrical quantities and some sub-metering values are available.

30. Yacht Hydrodynamics: Delft data set, used to predict the hydodynamic performance of sailing yachts from dimensions and velocity.

31. Airfoil Self-Noise: NASA data set, obtained from a series of aerodynamic and acoustic tests of two and three-dimensional airfoil blade sections conducted in an anechoic wind tunnel.

32. Shuttle Landing Control: Tiny database; all nominal values

33. Challenger USA Space Shuttle O-Ring: Task: predict the number of O-rings that experience thermal distress on a flight at 31 degrees F given data on the previous 23 shuttle flights


Supported By:

 In Collaboration With:

About  ||  Citation Policy  ||  Donation Policy  ||  Contact  ||  CML