Center for Machine Learning and Intelligent Systems
About  Citation Policy  Donate a Data Set  Contact

Repository Web            Google
View ALL Data Sets

Browse Through:

Default Task - Undo

Classification (60)
Regression (17)
Clustering (16)
Other (3)

Attribute Type

Categorical (0)
Numerical (53)
Mixed (2)

Data Type

Multivariate (51)
Univariate (2)
Sequential (2)
Time-Series (18)
Text (9)
Domain-Theory (3)
Other (0)


Life Sciences (10)
Physical Sciences (6)
CS / Engineering (38)
Social Sciences (0)
Business (2)
Game (1)
Other (3)

# Attributes - Undo

Less than 10 (73)
10 to 100 (154)
Greater than 100 (60)

# Instances

Less than 100 (4)
100 to 1000 (17)
Greater than 1000 (39)

Format Type

Matrix (48)
Non-Matrix (12)

60 Data Sets

Table View  List View

1. Amazon Commerce reviews set: The dataset is used for authorship identification in online Writeprint which is a new research field of pattern recognition.

2. APS Failure at Scania Trucks: The datasets' positive class consists of component failures for a specific component of the APS system. The negative class consists of trucks with failures for components not related to the APS.

3. Arcene: ARCENE's task is to distinguish cancer versus normal patterns from mass-spectrometric data. This is a two-class classification problem with continuous input variables. This dataset is one of 5 datasets of the NIPS 2003 feature selection challenge.

4. Arrhythmia: Distinguish between the presence and absence of cardiac arrhythmia and classify it in one of the 16 groups.

5. Character Font Images: Character images from scanned and computer generated fonts.

6. CNAE-9: This is a data set containing 1080 documents of free text business descriptions of Brazilian companies categorized into a subset of 9 categories

7. Daily and Sports Activities: The dataset comprises motion sensor data of 19 daily and sports activities each performed by 8 subjects in their own style for 5 minutes. Five Xsens MTx units are used on the torso, arms, and legs.

8. Data for Software Engineering Teamwork Assessment in Education Setting: Data include over 100 Team Activity Measures and outcomes (ML classes) obtained from activities of 74 student teams during the creation of final class project in SW Eng. classes at SFSU, Fulda, FAU

9. DBWorld e-mails: It contains 64 e-mails which I have manually collected from DBWorld mailing list. They are classified in: 'announces of conferences' and 'everything else'.

10. DeliciousMIL: A Data Set for Multi-Label Multi-Instance Learning with Instance Labels: This dataset includes 1) 12234 documents (8251 training, 3983 test) extracted from DeliciousT140 dataset, 2) class labels for all documents, 3) labels for a subset of sentences of the test documents.

11. Detect Malacious Executable(AntiVirus): I extract features from malacious and non-malacious and create and training dataset to teach svm classifier.Dataset made of unknown executable to detect if it is virus or normal safe executable.

12. Dexter: DEXTER is a text classification problem in a bag-of-word representation. This is a two-class classification problem with sparse continuous input variables. This dataset is one of five datasets of the NIPS 2003 feature selection challenge.

13. Dorothea: DOROTHEA is a drug discovery dataset. Chemical compounds represented by structural molecular features must be classified as active (binding to thrombin) or inactive. This is one of 5 datasets of the NIPS 2003 feature selection challenge.

14. Dota2 Games Results: Dota 2 is a popular computer game with two teams of 5 players. At the start of the game each player chooses a unique hero with different strengths and weaknesses.

15. DrivFace: The DrivFace contains images sequences of subjects while driving in real scenarios. It is composed of 606 samples of 640Ă—480, acquired over different days from 4 drivers with several facial features.

16. Dynamic Features of VirusShare Executables: This dataset contains the dynamic features of 107,888 executables, collected by VirusShare from Nov/2010 to Jul/2014.

17. Epileptic Seizure Recognition: This dataset is a pre-processed and re-structured/reshaped version of a very commonly used dataset featuring epileptic seizure detection.

18. Farm Ads: This data was collected from text ads found on twelve websites that deal with various farm animal related topics. The binary labels are based on whether or not the content owner approves of the ad.

19. FMA: A Dataset For Music Analysis: FMA features 106,574 tracks and includes song title, album, artist, genres; play counts, favorites, comments; description, biography, tags; together with audio (343 days, 917 GiB) and features.

20. Gas Sensor Array Drift Dataset: This archive contains 13910 measurements from 16 chemical sensors utilized in simulations for drift compensation in a discrimination task of 6 gases at various levels of concentrations.

21. Gas Sensor Array Drift Dataset at Different Concentrations: This archive contains 13910 measurements from 16 chemical sensors exposed to 6 different gases at various concentration levels.

22. Gas sensor array exposed to turbulent gas mixtures: A chemical detection platform composed of 8 chemoresistive gas sensors was exposed to turbulent gas mixtures generated naturally in a wind tunnel. The acquired time series of the sensors are provided.

23. Gas sensor array under flow modulation: The data set contains 58 time series acquired from 16 chemical sensors under gas flow modulation conditions. The sensors were exposed to different gaseous binary mixtures of acetone and ethanol.

24. Gas sensor arrays in open sampling settings: The dataset contains 18000 time-series recordings from a chemical detection platform at six different locations in a wind tunnel facility in response to ten high-priority chemical gaseous substances

25. Gastrointestinal Lesions in Regular Colonoscopy: This dataset contains features extracted from colonoscopy videos used to detect gastrointestinal lesions. It contains 76 lesions: 15 serrated adenomas, 21 hyperplastic lesions and 40 adenoma.

26. gene expression cancer RNA-Seq: This collection of data is part of the RNA-Seq (HiSeq) PANCAN data set, it is a random extraction of gene expressions of patients having different types of tumor: BRCA, KIRC, COAD, LUAD and PRAD.

27. Gisette: GISETTE is a handwritten digit recognition problem. The problem is to separate the highly confusible digits '4' and '9'. This dataset is one of five datasets of the NIPS 2003 feature selection challenge.

28. Hill-Valley: Each record represents 100 points on a two-dimensional graph. When plotted in order (from 1 through 100) as the Y co-ordinate, the points will create either a Hill (a “bump” in the terrain) or a Valley (a “dip” in the terrain).

29. Human Activity Recognition Using Smartphones: Human Activity Recognition database built from the recordings of 30 subjects performing activities of daily living (ADL) while carrying a waist-mounted smartphone with embedded inertial sensors.

30. IDA2016Challenge: The dataset consists of data collected from heavy Scania trucks in everyday usage.

31. Internet Advertisements: This dataset represents a set of possible advertisements on Internet pages.

32. ISOLET: Goal: Predict which letter-name was spoken--a simple classification task.

33. Low Resolution Spectrometer: From IRAS data -- NASA Ames Research Center

34. LSVT Voice Rehabilitation: 126 samples from 14 participants, 309 features. Aim: assess whether voice rehabilitation treatment lead to phonations considered 'acceptable' or 'unacceptable' (binary class classification problem).

35. Madelon: MADELON is an artificial dataset, which was part of the NIPS 2003 feature selection challenge. This is a two-class classification problem with continuous input variables. The difficulty is that the problem is multivariate and highly non-linear.

36. MicroMass: A dataset to explore machine learning approaches for the identification of microorganisms from mass-spectrometry data.

37. Multiple Features: This dataset consists of features of handwritten numerals (`0'--`9') extracted from a collection of Dutch utility maps

38. Musk (Version 1): The goal is to learn to predict whether new molecules will be musks or non-musks

39. Musk (Version 2): The goal is to learn to predict whether new molecules will be musks or non-musks

40. NoisyOffice: Corpus intended to do cleaning (or binarization) and enhancement of noisy grayscale printed text images using supervised learning methods. Noisy images and their corresponding ground truth provided.

41. Nomao: Nomao collects data about places (name, phone, localization...) from many sources. Deduplication consists in detecting what data refer to the same place. Instances in the dataset compare 2 spots.

42. Northix: Northix is designed to be a schema matching benchmark problem for data integration of two entity relationship databases.

43. OPPORTUNITY Activity Recognition: The OPPORTUNITY Dataset for Human Activity Recognition from Wearable, Object, and Ambient Sensors is a dataset devised to benchmark human activity recognition algorithms (classification, automatic data segmentation, sensor fusion, feature extraction, etc).

44. p53 Mutants: The goal is to model mutant p53 transcriptional activity (active vs inactive) based on data extracted from biophysical simulations.

45. PEMS-SF: 15 months worth of daily data (440 daily records) that describes the occupancy rate, between 0 and 1, of different car lanes of the San Francisco bay area freeways across time.

46. REALDISP Activity Recognition Dataset: The REALDISP dataset is devised to evaluate techniques dealing with the effects of sensor displacement in wearable activity recognition as well as to benchmark general activity recognition algorithms

47. Reuter_50_50: The dataset is used for authorship identification in online Writeprint which is a new research field of pattern recognition.

48. SECOM: Data from a semi-conductor manufacturing process

49. Semeion Handwritten Digit: 1593 handwritten digits from around 80 persons were scanned, stretched in a rectangular box 16x16 in a gray scale of 256 values.

50. sEMG for Basic Hand movements: The “sEMG for Basic Hand movements” includes 2 databases of surface electromyographic signals of 6 hand movements using Delsys' EMG System. Healthy subjects conducted six daily life grasps.

51. Smartphone Dataset for Human Activity Recognition (HAR) in Ambient Assisted Living (AAL): This data is an addition to an existing dataset on UCI. We collected more data to improve the accuracy of our human activity recognition algorithms applied in the domain of Ambient Assisted Living.

52. Smartphone-Based Recognition of Human Activities and Postural Transitions: Activity recognition data set built from the recordings of 30 subjects performing basic activities and postural transitions while carrying a waist-mounted smartphone with embedded inertial sensors.

53. TTC-3600: Benchmark dataset for Turkish text categorization: The TTC-3600 data set is a collection of Turkish news and articles including categorized 3,600 documents from 6 well-known portals in Turkey. It has 4 different forms in ARFF Weka format.

54. Twin gas sensor arrays: 5 replicates of an 8-MOX gas sensor array were exposed to different gas conditions (4 volatiles at 10 concentration levels each).

55. UJIIndoorLoc: The UJIIndoorLoc is a Multi-Building Multi-Floor indoor localization database to test Indoor Positioning System that rely on WLAN/WiFi fingerprint.

56. Ultrasonic flowmeter diagnostics: Fault diagnosis of four liquid ultrasonic flowmeters

57. Urban Land Cover: Classification of urban land cover using high resolution aerial imagery. Intended to assist sustainable urban planning efforts.

58. URL Reputation: Anonymized 120-day subset of the ICML-09 URL data containing 2.4 million examples and 3.2 million features.

59. Weight Lifting Exercises monitored with Inertial Measurement Units: Six young health subjects were asked to perform 5 variations of the biceps curl weight lifting exercise. One of the variations is the one predicted by the health professional.

60. YouTube Multiview Video Games Dataset: This dataset contains about 120k instances, each described by 13 feature types, with class information, specially useful for exploring multiview topics (cotraining, ensembles, clustering,..).

Supported By:

 In Collaboration With:

About  ||  Citation Policy  ||  Donation Policy  ||  Contact  ||  CML