Center for Machine Learning and Intelligent Systems
About  Citation Policy  Donate a Data Set  Contact


Repository Web            Google
View ALL Data Sets

Browse Through:

Default Task - Undo

Classification (27)
Regression (12)
Clustering (3)
Other (2)

Attribute Type

Categorical (1)
Numerical (22)
Mixed (2)

Data Type - Undo

Multivariate (27)
Univariate (0)
Sequential (1)
Time-Series (4)
Text (1)
Domain-Theory (1)
Other (3)

Area - Undo

Life Sciences (77)
Physical Sciences (27)
CS / Engineering (101)
Social Sciences (12)
Business (17)
Game (7)
Other (37)

# Attributes

Less than 10 (3)
10 to 100 (18)
Greater than 100 (6)

# Instances

Less than 100 (1)
100 to 1000 (11)
Greater than 1000 (15)

Format Type

Matrix (21)
Non-Matrix (6)

27 Data Sets

Table View  List View


1. Wine: Using chemical analysis determine the origin of wines

2. Weight Lifting Exercises monitored with Inertial Measurement Units: Six young health subjects were asked to perform 5 variations of the biceps curl weight lifting exercise. One of the variations is the one predicted by the health professional.

3. Waveform Database Generator (Version 2): CART book's waveform domains

4. Waveform Database Generator (Version 1): CART book's waveform domains

5. Urban Land Cover: Classification of urban land cover using high resolution aerial imagery. Intended to assist sustainable urban planning efforts.

6. Steel Plates Faults: A dataset of steel plates’ faults, classified into 7 different types. The goal was to train machine learning for automatic pattern recognition.

7. Statlog (Shuttle): The shuttle dataset contains 9 attributes all of which are numerical. Approximately 80% of the data belongs to class 1

8. Statlog (Landsat Satellite): Multi-spectral values of pixels in 3x3 neighbourhoods in a satellite image, and the classification associated with the central pixel in each neighbourhood

9. Shuttle Landing Control: Tiny database; all nominal values

10. Robot Execution Failures: This dataset contains force and torque measurements on a robot after failure detection. Each failure is characterized by 15 force/torque samples collected at regular time intervals

11. Ozone Level Detection: Two ground ozone level data sets are included in this collection. One is the eight hour peak set (eighthr.data), the other is the one hour peak set (onehr.data). Those data were collected from 1998 to 2004 at the Houston, Galveston and Brazoria area.

12. Musk (Version 2): The goal is to learn to predict whether new molecules will be musks or non-musks

13. Musk (Version 1): The goal is to learn to predict whether new molecules will be musks or non-musks

14. MiniBooNE particle identification: This dataset is taken from the MiniBooNE experiment and is used to distinguish electron neutrinos (signal) from muon neutrinos (background).

15. MAGIC Gamma Telescope: Data are MC generated to simulate registration of high energy gamma particles in an atmospheric Cherenkov telescope

16. Low Resolution Spectrometer: From IRAS data -- NASA Ames Research Center

17. Ionosphere: Classification of radar returns from the ionosphere

18. HTRU2: Pulsar candidates collected during the HTRU survey. Pulsars are a type of star, of considerable scientific interest. Candidates must be classified in to pulsar and non-pulsar classes to aid discovery.

19. HEPMASS: The search for exotic particles requires sorting through a large number of collisions to find the events of interest. This data set challenges one to detect a new particle of unknown mass.

20. Glass Identification: From USA Forensic Science Service; 6 types of glass; defined in terms of their oxide content (i.e. Na, Fe, K, etc)

21. Electrical Grid Stability Simulated Data : The local stability analysis of the 4-node star system (electricity producer is in the center) implementing Decentral Smart Grid Control concept.

22. Cylinder Bands: Used in decision tree induction for mitigating process delays known as "cylinder bands" in rotogravure printing

23. Crowdsourced Mapping: Crowdsourced data from OpenStreetMap is used to automate the classification of satellite images into different land cover classes (impervious, farm, forest, grass, orchard, water).

24. Connectionist Bench (Sonar, Mines vs. Rocks): The task is to train a network to discriminate between sonar signals bounced off a metal cylinder and those bounced off a roughly cylindrical rock.

25. Climate Model Simulation Crashes: Given Latin hypercube samples of 18 climate model input parameter values, predict climate model simulation crashes and determine the parameter value combinations that cause the failures.

26. Annealing: Steel annealing data

27. Amazon Commerce reviews set: The dataset is used for authorship identification in online Writeprint which is a new research field of pattern recognition.


Supported By:

 In Collaboration With:

About  ||  Citation Policy  ||  Donation Policy  ||  Contact  ||  CML