Center for Machine Learning and Intelligent Systems
About  Citation Policy  Donate a Data Set  Contact


Repository Web            Google
View ALL Data Sets

Browse Through:

Default Task

Classification (8)
Regression (2)
Clustering (1)
Other (1)

Attribute Type

Categorical (0)
Numerical (9)
Mixed (3)

Data Type - Undo

Multivariate (12)
Univariate (0)
Sequential (0)
Time-Series (0)
Text (0)
Domain-Theory (0)
Other (0)

Area - Undo

Life Sciences (32)
Physical Sciences (12)
CS / Engineering (11)
Social Sciences (3)
Business (6)
Game (1)
Other (12)

# Attributes

Less than 10 (1)
10 to 100 (10)
Greater than 100 (1)

# Instances - Undo

Less than 100 (2)
100 to 1000 (12)
Greater than 1000 (13)

Format Type - Undo

Matrix (12)
Non-Matrix (3)

12 Data Sets

Table View  List View


1. Annealing: Steel annealing data

2. Cylinder Bands: Used in decision tree induction for mitigating process delays known as "cylinder bands" in rotogravure printing

3. Glass Identification: From USA Forensic Science Service; 6 types of glass; defined in terms of their oxide content (i.e. Na, Fe, K, etc)

4. Ionosphere: Classification of radar returns from the ionosphere

5. Musk (Version 1): The goal is to learn to predict whether new molecules will be musks or non-musks

6. Water Treatment Plant: Multiple classes predict plant state

7. Wine: Using chemical analysis determine the origin of wines

8. Coil 1999 Competition Data: This data set is from the 1999 Computational Intelligence and Learning (COIL) competition. The data contains measurements of river chemical concentrations and algae densities.

9. Connectionist Bench (Sonar, Mines vs. Rocks): The task is to train a network to discriminate between sonar signals bounced off a metal cylinder and those bounced off a roughly cylindrical rock.

10. Forest Fires: This is a difficult regression task, where the aim is to predict the burned area of forest fires, in the northeast region of Portugal, by using meteorological and other data (see details at: http://www.dsi.uminho.pt/~pcortez/forestfires).

11. Yacht Hydrodynamics: Delft data set, used to predict the hydodynamic performance of sailing yachts from dimensions and velocity.

12. Climate Model Simulation Crashes: Given Latin hypercube samples of 18 climate model input parameter values, predict climate model simulation crashes and determine the parameter value combinations that cause the failures.


Supported By:

 In Collaboration With:

About  ||  Citation Policy  ||  Donation Policy  ||  Contact  ||  CML