Center for Machine Learning and Intelligent Systems
About  Citation Policy  Donate a Data Set  Contact


Repository Web            Google
View ALL Data Sets

Z-Alizadeh Sani Data Set
Download: Data Folder, Data Set Description

Abstract: It was collected for CAD diagnosis.

Data Set Characteristics:  

N/A

Number of Instances:

303

Area:

Life

Attribute Characteristics:

Integer, Real

Number of Attributes:

56

Date Donated

2017-11-17

Associated Tasks:

Classification

Missing Values?

N/A

Number of Web Hits:

2051


Source:

Provide the names, email addresses, institutions, and other contact information of the donors and creators of the data set.

Name:Dr Zahra Alizadeh Sani,Associate Professor of cardiology,
email:Drzas '@' rhc.ac.ir,
institution: Cardiovascular Imaging Department, Rajaei Cardiovascular, Medical & Research Center, Iran University , Tehran, Iran.
Post code:1996911151
website: http://dralizadehsani.rhc.ac.ir/Files/Forms/2016-11-13_01.46.29_dr.alizadeh.CV.pdf

Name:Roohallah Alizadehsani, PhD student
email: alizadeh_roohallah '@' yahoo.com
institution: Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria 3217, Australia.
website: http://ce.sharif.ir/~ralizadeh/

Name: Mohamad Roshanzamir, PhD candidate
email: mohamad.roshanzamir '@' ec.iut.ac.ir
institution: Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran.


Data Set Information:

Each patient could be in two possible categories CAD or Normal. A patient is categorized as CAD, if his/her diameter narrowing is greater than or equal to 50%, and otherwise as Normal .


Attribute Information:

The Z-Alizadeh Sani dataset contains the records of 303 patients, each of which have 54 features.The features are arranged in four groups: demographic, symptom and examination, ECG, and laboratory and echo features.


Relevant Papers:

R. Alizadehsani, J. Habibi, M. J. Hosseini, H. Mashayekhi, R. Boghrati, A. Ghandeharioun, et al., 'A data mining approach for diagnosis of coronary artery disease,' Computer Methods and Programs in Biomedicine, vol. 111, pp. 52-61, 2013/07/01/ 2013.

R. Alizadehsani, J. Habibi, B. Bahadorian, H. Mashayekhi, A. Ghandeharioun, R. Boghrati, et al., 'Diagnosis of Coronary Arteries Stenosis Using Data Mining,' Journal of Medical Signals and Sensors, vol. 2, pp. 153-159, Jul-Sep

R. Alizadehsani, M. J. Hosseini, Z. A. Sani, A. Ghandeharioun, and R. Boghrati, 'Diagnosis of Coronary Artery Disease Using Cost-Sensitive Algorithms,' in 2012 IEEE 12th International Conference on Data Mining Workshops, 2012, pp. 9-16.

Z. Arabasadi, R. Alizadehsani, M. Roshanzamir, H. Moosaei, and A. A. Yarifard, 'Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm,' Computer Methods and Programs in Biomedicine, vol. 141, pp. 19-26, 2017/04/01/ 2017.

R. Alizadehsani, J. Habibi, Z. Alizadeh Sani, H. Mashayekhi, R. Boghrati, A. Ghandeharioun, et al., 'Diagnosing Coronary Artery Disease via Data Mining Algorithms by Considering Laboratory and Echocardiography Features,' Research in Cardiovascular Medicine, vol. 2, pp. 133-139, 07/31

R. Alizadehsani, J. Habibi, M. J. Hosseini, R. Boghrati, A. Ghandeharioun, B. Bahadorian, et al., 'Diagnosis of coronary artery disease using data mining techniques based on symptoms and ecg features,' European Journal of Scientific Research, vol. 82, pp. 542-553, 2012.

R. Alizadehsani, M. H. Zangooei, M. J. Hosseini, J. Habibi, A. Khosravi, M. Roshanzamir, et al., 'Coronary artery disease detection using computational intelligence methods,' Knowledge-Based Systems, vol. 109, pp. 187-197, 2016/10/01/ 2016.

R. Alizadehsani, J. Habibi, Z. A. Sani, H. Mashayekhi, R. Boghrati, A. Ghandeharioun, et al., 'Diagnosis of Coronary Artery Disease Using Data mining based on Lab Data and Echo Features,' Journal of Medical and Bioengineering, vol. 1, 2012.

A. Roohallah, H. Mohammad Javad, B. Reihane, G. Asma, K. Fahime, and S. Zahra Alizadeh, 'Exerting Cost-Sensitive and Feature Creation Algorithms for Coronary Artery Disease Diagnosis,' International Journal of Knowledge Discovery in Bioinformatics (IJKDB), vol. 3, pp. 59-79, 2012.

R. Alizadehsani, M. J. Hosseini, Z. Alizadehsani, M. H. Mohammadi, O. Barati, and F. Khozeimeh, 'System for determining the need for Angiography in patients with symptoms of Coronary Artery disease,' ed: Google Patents, 2014.

F. Babič, J. Olejár, Z. Vantová, and J. Paralič, 'Predictive and Descriptive Analysis for Heart Disease Diagnosis,' presented at the Federated Conference on Computer Science and Information Systems, 2017.

LOHITA, Kodali et al. Performance Analysis of Various Data Mining Techniques in the Prediction of Heart Disease. Indian Journal of Science and Technology, [S.l.], dec. 2015. ISSN 0974 -5645. Available at: <[Web Link]>. Date accessed: 17 Nov. 2017. [Web Link].

J. Bektaş, T. Ibrikçi, and I. Özcan, 'Classification of Real Imbalanced Cardiovascular Data Using Feature Selection and Sampling Methods: A Case Study with Neural Networks and Logistic Regression,' International Journal on Artificial Intelligence Tools, 2017.

C. Yadav, S. Lade, and M. K. Suman, 'Predictive Analysis for the Diagnosis of Coronary Artery Disease using Association Rule Mining,' International Journal of Computer Applications, vol. 87, 2014.




Citation Request:

Z-Alizadeh Sani Dataset User Agreement

I agree with following items.

• To cite Z-Alizadeh Sani Dataset in any paper of mine or my collaborators that makes any use of the database. The reference is:

1. R. Alizadehsani et al., “A data mining approach for diagnosis of coronary artery disease,” Computer Methods and Programs in Biomedicine, vol.111, no.1, pp.52-61, Jul. 2013.
2. R. Alizadehsani, M.H. Zangooei, M.J. Hosseini, J. Habibi, A. Khosravi, M. Roshanzamir, F. Khozeimeh, N. Sarrafzadegan, S. Nahavandi, Coronary artery disease detection using computational intelligence methods, Knowledge-Based Systems, 109 (2016) 187-197
3. Z. Arabasadi, R. Alizadehsani, M. Roshanzamir, H. Moosaei, and A. A. Yarifard, 'Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm,' Computer Methods and Programs in Biomedicine, vol. 141, pp. 19-26, 2017/04/01/ 2017.

• To use the dataset for research purposes only.


Supported By:

 In Collaboration With:

About  ||  Citation Policy  ||  Donation Policy  ||  Contact  ||  CML