Center for Machine Learning and Intelligent Systems
About  Citation Policy  Donate a Data Set  Contact


Repository Web            Google
View ALL Data Sets

Browse Through:

Default Task

Classification (29)
Regression (17)
Clustering (15)
Other (2)

Attribute Type

Categorical (0)
Numerical (30)
Mixed (4)

Data Type

Multivariate (31)
Univariate (1)
Sequential (6)
Time-Series (8)
Text (5)
Domain-Theory (3)
Other (0)

Area - Undo

Life Sciences (131)
Physical Sciences (55)
CS / Engineering (205)
Social Sciences (31)
Business (40)
Game (10)
Other (80)

# Attributes

Less than 10 (10)
10 to 100 (24)
Greater than 100 (3)

# Instances

Less than 100 (2)
100 to 1000 (17)
Greater than 1000 (20)

Format Type

Matrix (33)
Non-Matrix (7)

40 Data Sets

Table View  List View


1. Wine Quality: Two datasets are included, related to red and white vinho verde wine samples, from the north of Portugal. The goal is to model wine quality based on physicochemical tests (see [Cortez et al., 2009], http://www3.dsi.uminho.pt/pcortez/wine/).

2. Wholesale customers: The data set refers to clients of a wholesale distributor. It includes the annual spending in monetary units (m.u.) on diverse product categories

3. Vehicle routing and scheduling problems: Data collection was conducted through notes taken during the distribution of orders in a courier company that operates in the region and in the city of São Paulo (Brazil).

4. Taiwanese Bankruptcy Prediction: The data were collected from the Taiwan Economic Journal for the years 1999 to 2009. Company bankruptcy was defined based on the business regulations of the Taiwan Stock Exchange.

5. Stock portfolio performance: The data set of performances of weighted scoring stock portfolios are obtained with mixture design from the US stock market historical database.

6. Stock keeping units: The dataset is provided by the “Trialto Latvia LTD”, the third-party logistics operator. Each observation stands for a distinct type of item for sale.

7. Statlog (German Credit Data): This dataset classifies people described by a set of attributes as good or bad credit risks. Comes in two formats (one all numeric). Also comes with a cost matrix

8. Statlog (Australian Credit Approval): This file concerns credit card applications. This database exists elsewhere in the repository (Credit Screening Database) in a slightly different form

9. South German Credit (UPDATE): 700 good and 300 bad credits with 20 predictor variables. Data from 1973 to 1975. Stratified sample from actual credits with bad credits heavily oversampled. A cost matrix can be used.

10. South German Credit: 700 good and 300 bad credits with 20 predictor variables. Data from 1973 to 1975. Stratified sample from actual credits with bad credits heavily oversampled. A cost matrix can be used.

11. Reuters Transcribed Subset: This dataset is created by reading out 200 files from the 10 largest Reuters classes and using an Automatic Speech Recognition system to create corresponding transcriptions.

12. Real estate valuation data set: The “real estate valuation” is a regression problem. The market historical data set of real estate valuation are collected from Sindian Dist., New Taipei City, Taiwan.

13. Polish companies bankruptcy data: The dataset is about bankruptcy prediction of Polish companies.The bankrupt companies were analyzed in the period 2000-2012, while the still operating companies were evaluated from 2007 to 2013.

14. Online Shoppers Purchasing Intention Dataset: Of the 12,330 sessions in the dataset, 84.5% (10,422) were negative class samples that did not end with shopping, and the rest (1908) were positive class samples ending with shopping.

15. Online Retail II: A real online retail transaction data set of two years.

16. Online Retail: This is a transnational data set which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail.

17. Online News Popularity: This dataset summarizes a heterogeneous set of features about articles published by Mashable in a period of two years. The goal is to predict the number of shares in social networks (popularity).

18. Machine Learning based ZZAlpha Ltd. Stock Recommendations 2012-2014: The data here are the ZZAlpha® machine learning recommendations made for various US traded stock portfolios the morning of each day during the 3 year period Jan 1, 2012 - Dec 31, 2014.

19. Las Vegas Strip: This dataset includes quantitative and categorical features from online reviews from 21 hotels located in Las Vegas Strip, extracted from TripAdvisor (http://www.tripadvisor.com).

20. Japanese Credit Screening: Includes domain theory (generated by talking to Japanese domain experts); data in Lisp

21. ISTANBUL STOCK EXCHANGE: Data sets includes returns of Istanbul Stock Exchange with seven other international index; SP, DAX, FTSE, NIKKEI, BOVESPA, MSCE_EU, MSCI_EM from Jun 5, 2009 to Feb 22, 2011.

22. Iranian Churn Dataset: This dataset is randomly collected from an Iranian telecom company’s database over a period of 12 months.

23. Incident management process enriched event log: This event log was extracted from data gathered from the audit system of an instance of the ServiceNow platform used by an IT company and enriched with data loaded from a relational database.

24. Farm Ads: This data was collected from text ads found on twelve websites that deal with various farm animal related topics. The binary labels are based on whether or not the content owner approves of the ad.

25. Facebook metrics: Facebook performance metrics of a renowned cosmetic's brand Facebook page.

26. Facebook Live Sellers in Thailand: Facebook pages of 10 Thai fashion and cosmetics retail sellers. Posts of a different nature (video, photos, statuses, and links). Engagement metrics consist of comments, shares, and reactions.

27. Economic Sanctions: Domain Theory on Economic Sanctions; Undocumented

28. Eco-hotel: This dataset includes Online Textual Reviews from both online (e.g., TripAdvisor) and offline (e.g., Guests' book) sources from the Areias do Seixo Eco-Resort.

29. Dow Jones Index: This dataset contains weekly data for the Dow Jones Industrial Index. It has been used in computational investing research.

30. default of credit card clients: This research aimed at the case of customers’ default payments in Taiwan and compares the predictive accuracy of probability of default among six data mining methods.

31. Daily Demand Forecasting Orders: The dataset was collected during 60 days, this is a real database of a brazilian logistics company.

32. Credit Approval: This data concerns credit card applications; good mix of attributes

33. CNAE-9: This is a data set containing 1080 documents of free text business descriptions of Brazilian companies categorized into a subset of 9 categories

34. clickstream data for online shopping: The dataset contains information on clickstream from online store offering clothing for pregnant women.

35. Cargo 2000 Freight Tracking and Tracing: Sanitized and anonymized Cargo 2000 (C2K) airfreight tracking and tracing events, covering five months of business execution (3,942 process instances, 7,932 transport legs, 56,082 activities).

36. Blood Transfusion Service Center: Data taken from the Blood Transfusion Service Center in Hsin-Chu City in Taiwan -- this is a classification problem.

37. Bank Marketing: The data is related with direct marketing campaigns (phone calls) of a Portuguese banking institution. The classification goal is to predict if the client will subscribe a term deposit (variable y).

38. Apartment for rent classified: This is a dataset of classified for apartments for rent in USA.

39. Amazon Access Samples: Amazon's InfoSec is getting smarter about the way Access data is leveraged. This is an anonymized sample of access provisioned within the company.

40. Absenteeism at work: The database was created with records of absenteeism at work from July 2007 to July 2010 at a courier company in Brazil.


Supported By:

 In Collaboration With:

About  ||  Citation Policy  ||  Donation Policy  ||  Contact  ||  CML