1. Absenteeism at work: The database was created with records of absenteeism at work from July 2007 to July 2010 at a courier company in Brazil. 2. Bank Marketing: The data is related with direct marketing campaigns (phone calls) of a Portuguese banking institution. The classification goal is to predict if the client will subscribe a term deposit (variable y). 3. Cargo 2000 Freight Tracking and Tracing: Sanitized and anonymized Cargo 2000 (C2K) airfreight tracking and tracing events, covering five months of business execution (3,942 process instances, 7,932 transport legs, 56,082 activities). 4. Credit Approval: This data concerns credit card applications; good mix of attributes 5. Daily Demand Forecasting Orders: The dataset was collected during 60 days, this is a real database of a brazilian logistics company. 6. default of credit card clients: This research aimed at the case of customers’ default payments in Taiwan and compares the predictive accuracy of probability of default among six data mining methods. 7. Dow Jones Index: This dataset contains weekly data for the Dow Jones Industrial Index. It has been used in computational investing research. 8. Facebook Live Sellers in Thailand: Facebook pages of 10 Thai fashion and cosmetics retail sellers. Posts of a different nature (video, photos, statuses, and links). Engagement metrics consist of comments, shares, and reactions. 9. Facebook metrics: Facebook performance metrics of a renowned cosmetic's brand Facebook page. 10. Incident management process enriched event log: This event log was extracted from data gathered from the audit system of an instance of the ServiceNow platform used by an IT company and enriched with data loaded from a relational database. 11. Las Vegas Strip: This dataset includes quantitative and categorical features from online reviews from 21 hotels located in Las Vegas Strip, extracted from TripAdvisor (http://www.tripadvisor.com). 12. Online News Popularity: This dataset summarizes a heterogeneous set of features about articles published by Mashable in a period of two years. The goal is to predict the number of shares in social networks (popularity). 13. Online Shoppers Purchasing Intention Dataset: Of the 12,330 sessions in the dataset,
84.5% (10,422) were negative class samples that did not
end with shopping, and the rest (1908) were positive class
samples ending with shopping. 14. Polish companies bankruptcy data: The dataset is about bankruptcy prediction of Polish companies.The bankrupt companies were analyzed in the period 2000-2012, while the still operating companies were evaluated from 2007 to 2013. 15. Statlog (Australian Credit Approval): This file concerns credit card applications. This database exists elsewhere in the repository (Credit Screening Database) in a slightly different form 16. Statlog (German Credit Data): This dataset classifies people described by a set of attributes as good or bad credit risks. Comes in two formats (one all numeric). Also comes with a cost matrix 17. Stock portfolio performance: The data set of performances of weighted scoring stock portfolios are obtained with mixture design from the US stock market historical database. 18. Wine Quality: Two datasets are included, related to red and white vinho verde wine samples, from the north of Portugal. The goal is to model wine quality based on physicochemical tests (see [Cortez et al., 2009], http://www3.dsi.uminho.pt/pcortez/wine/). |