1. Myocardial infarction complications: Prediction of myocardial infarction complications 2. Simulated Falls and Daily Living Activities Data Set: 20 falls and 16 daily living activities were performed by 17 volunteers with 5 repetitions while wearing 6 sensors (3.060 instances) that attached to their head, chest, waist, wrist, thigh and ankle. 3. Epileptic Seizure Recognition: This dataset is a pre-processed and re-structured/reshaped version of a very commonly used dataset featuring epileptic seizure detection. 4. Influenza outbreak event prediction via Twitter data: By identifying influenza-related tweets, the goal is to forecast the spatiotemporal patterns of influenza outbreaks for different locations and dates. 5. Activity recognition using wearable physiological measurements: This dataset contains features from Electrocardiogram (ECG), Thoracic Electrical Bioimpedance (TEB) and the Electrodermal Activity (EDA) for activity recognition. 6. Smartphone-Based Recognition of Human Activities and Postural Transitions: Activity recognition data set built from the recordings of 30 subjects performing basic activities and postural transitions while carrying a waist-mounted smartphone with embedded inertial sensors.
7. sEMG for Basic Hand movements: The sEMG for Basic Hand movements includes 2 databases of surface electromyographic signals of 6 hand movements using Delsys' EMG System. Healthy subjects conducted six daily life grasps. 8. p53 Mutants: The goal is to model mutant p53 transcriptional activity (active vs inactive) based on data extracted from biophysical simulations.
9. Dorothea: DOROTHEA is a drug discovery dataset. Chemical compounds represented by structural molecular features must be classified as active (binding to thrombin) or inactive. This is one of 5 datasets of the NIPS 2003 feature selection challenge. 10. KASANDR: KASANDR is a novel, publicly available collection for recommendation systems that records the behavior of customers of the European leader in e-Commerce advertising, Kelkoo. |