1. Wine: Using chemical analysis determine the origin of wines 2. Water Treatment Plant: Multiple classes predict plant state 3. Robot Execution Failures: This dataset contains force and torque measurements on a robot after failure detection. Each failure is characterized by 15 force/torque samples collected at regular time intervals 4. Ionosphere: Classification of radar returns from the ionosphere 5. Glass Identification: From USA Forensic Science Service; 6 types of glass; defined in terms of their oxide content (i.e. Na, Fe, K, etc) 6. Forest Fires: This is a difficult regression task, where the aim is to predict the burned area of forest fires, in the northeast region of Portugal, by using meteorological and other data (see details at: http://www.dsi.uminho.pt/~pcortez/forestfires). 7. Cylinder Bands: Used in decision tree induction for mitigating process delays known as "cylinder bands" in rotogravure printing 8. Connectionist Bench (Sonar, Mines vs. Rocks): The task is to train a network to discriminate between sonar signals bounced off a metal cylinder and those bounced off a roughly cylindrical rock. 9. Coil 1999 Competition Data: This data set is from the 1999 Computational Intelligence and Learning (COIL) competition. The data contains measurements of river chemical concentrations and algae densities. 10. Climate Model Simulation Crashes: Given Latin hypercube samples of 18 climate model input parameter values, predict climate model simulation crashes and determine the parameter value combinations that cause the failures. 11. Annealing: Steel annealing data |