1. Human Activity Recognition from Continuous Ambient Sensor Data: This dataset represents ambient data collected in homes with volunteer residents. Data are collected continuously while residents perform their normal routines. 2. Gesture Phase Segmentation: The dataset is composed by features extracted from 7 videos with people gesticulating, aiming at studying Gesture Phase Segmentation. It contains 50 attributes divided into two files for each video. 3. Spoken Arabic Digit: This dataset contains timeseries of mel-frequency cepstrum coefficients (MFCCs) corresponding to spoken Arabic digits. Includes data from 44 male and 44 female native Arabic speakers. 4. Australian Sign Language signs (High Quality): This data consists of sample of Auslan (Australian Sign Language) signs. 27 examples of each of 95 Auslan signs were captured from a native signer using high-quality position trackers 5. Australian Sign Language signs: This data consists of sample of Auslan (Australian Sign Language) signs. Examples of 95 signs were collected from five signers with a total of 6650 sign samples. |