1. Gesture Phase Segmentation: The dataset is composed by features extracted from 7 videos with people gesticulating, aiming at studying Gesture Phase Segmentation. It contains 50 attributes divided into two files for each video. 2. UJIIndoorLoc-Mag: The UJIIndoorLoc-Mag is an indoor localization database to test Indoor Positioning System that rely on Earth's magnetic field variations. 3. Educational Process Mining (EPM): A Learning Analytics Data Set: Educational Process Mining data set is built from the recordings of 115 subjects' activities through a logging application while learning with an educational simulator. 4. Geo-Magnetic field and WLAN dataset for indoor localisation from wristband and smartphone: A multisource and multivariate dataset for indoor localisation methods based on WLAN and Geo-Magnetic field fingerprinting 5. BLE RSSI Dataset for Indoor localization and Navigation: This dataset contains RSSI readings gathered from an array of Bluetooth Low Energy (BLE) iBeacons in a real-world and operational indoor environment for localization and navigation purposes. 6. BitcoinHeistRansomwareAddressDataset: BitcoinHeist datasets contains address features on the heterogeneous Bitcoin network to identify ransomware payments. 7. Heterogeneity Activity Recognition: The Heterogeneity Human Activity Recognition (HHAR) dataset from Smartphones and Smartwatches is a dataset devised to benchmark human activity recognition algorithms (classification, automatic data segmentation, sensor fusion, feature extraction, etc.) in real-world contexts; specifically, the dataset is gathered with a variety of different device models and use-scenarios, in order to reflect sensing heterogeneities to be expected in real deployments. |