1. Apartment for rent classified: This is a dataset of classified for apartments for rent in USA.
2. Iranian Churn Dataset: This dataset is randomly collected from an Iranian telecom company’s database over a period of 12 months. 3. Taiwanese Bankruptcy Prediction: The data were collected from the Taiwan Economic Journal for the years 1999 to 2009. Company bankruptcy was defined based on the business regulations of the Taiwan Stock Exchange. 4. Facebook Live Sellers in Thailand: Facebook pages of 10 Thai fashion and cosmetics retail sellers. Posts of a different nature (video, photos, statuses, and links). Engagement metrics consist of comments, shares, and reactions. 5. clickstream data for online shopping: The dataset contains information on clickstream from online store offering clothing for pregnant women. 6. Online News Popularity: This dataset summarizes a heterogeneous set of features about articles published by Mashable in a period of two years. The goal is to predict the number of shares in social networks (popularity). 7. default of credit card clients: This research aimed at the case of customers’ default payments in Taiwan and compares the predictive accuracy of probability of default among six data mining methods. 8. Online Shoppers Purchasing Intention Dataset: Of the 12,330 sessions in the dataset,
84.5% (10,422) were negative class samples that did not
end with shopping, and the rest (1908) were positive class
samples ending with shopping. 9. Polish companies bankruptcy data: The dataset is about bankruptcy prediction of Polish companies.The bankrupt companies were analyzed in the period 2000-2012, while the still operating companies were evaluated from 2007 to 2013. 10. Wine Quality: Two datasets are included, related to red and white vinho verde wine samples, from the north of Portugal. The goal is to model wine quality based on physicochemical tests (see [Cortez et al., 2009], http://www3.dsi.uminho.pt/pcortez/wine/). 11. Bank Marketing: The data is related with direct marketing campaigns (phone calls) of a Portuguese banking institution. The classification goal is to predict if the client will subscribe a term deposit (variable y). |