1. Activity Recognition from Single Chest-Mounted Accelerometer: The dataset collects data from a wearable accelerometer mounted on the chest. The dataset is intended for Activity Recognition research purposes. 2. Audit Data: Exhaustive one year non-confidential data in the year 2015 to 2016 of firms is collected from the Auditor Office of India to build a predictor for classifying suspicious firms. 3. Australian Sign Language signs (High Quality): This data consists of sample of Auslan (Australian Sign Language) signs. 27 examples of each of 95 Auslan signs were captured from a native signer using high-quality position trackers 4. BuddyMove Data Set: User interest information extracted from user reviews published in holidayiq.com about various types of point of interests in South India 5. Crop mapping using fused optical-radar data set: Combining optical and PolSAR remote sensing images offers a complementary data set with a significant number of temporal, spectral, textural, and polarimetric features for cropland classification. 6. Dexter: DEXTER is a text classification problem in a bag-of-word representation. This is a two-class classification problem with sparse continuous input variables. This dataset is one of five datasets of the NIPS 2003 feature selection challenge.
7. Gesture Phase Segmentation: The dataset is composed by features extracted from 7 videos with people gesticulating, aiming at studying Gesture Phase Segmentation. It contains 50 attributes divided into two files for each video. 8. Human Activity Recognition from Continuous Ambient Sensor Data: This dataset represents ambient data collected in homes with volunteer residents. Data are collected continuously while residents perform their normal routines. 9. Image Segmentation: Image data described by high-level numeric-valued attributes, 7 classes 10. Japanese Vowels: This dataset records 640 time series of 12 LPC cepstrum coefficients taken from nine male speakers. 11. Libras Movement: The data set contains 15 classes of 24 instances each. Each class references to a hand movement type in LIBRAS (Portuguese
name 'LÍngua BRAsileira de Sinais', oficial brazilian signal language). 12. Madelon: MADELON is an artificial dataset, which was part of the NIPS 2003 feature selection challenge. This is a two-class classification problem with continuous input variables. The difficulty is that the problem is multivariate and highly non-linear. 13. QSAR biodegradation: Data set containing values for 41 attributes (molecular descriptors) used to classify 1055 chemicals into 2 classes (ready and not ready biodegradable). 14. Record Linkage Comparison Patterns: Element-wise comparison of records with personal data from a record linkage setting. The task is to decide from a comparison pattern whether the underlying records belong to one person. 15. seismic-bumps: The data describe the problem of high energy (higher than 10^4 J) seismic bumps forecasting in a coal
mine. Data come from two of longwalls located in a Polish coal mine. 16. Statlog (Image Segmentation): This dataset is an image segmentation database similar to a database already present in the repository (Image segmentation database) but in a slightly different form. 17. Statlog (Vehicle Silhouettes): 3D objects within a 2D image by application of an ensemble of shape feature extractors to the 2D silhouettes of the objects. 18. StoneFlakes: Stone flakes are waste products of the stone tool production in
the prehistoric era. The variables are means of geometric and
stylistic features of the flakes contained in different inventories. 19. Synthetic Control Chart Time Series: This data consists of synthetically generated control charts. 20. Tarvel Review Ratings: Google reviews on attractions from 24 categories across Europe are considered. Google user rating ranges from 1 to 5 and average user rating per category is calculated. 21. Tennis Major Tournament Match Statistics: This is a collection of 8 files containing the match statistics for both women and men at the four major tennis tournaments of the year 2013. Each file has 42 columns and a minimum of 76 rows. 22. Travel Reviews: Reviews on destinations in 10 categories mentioned across East Asia. Each traveler rating is mapped as Excellent(4), Very Good(3), Average(2), Poor(1), and Terrible(0) and average rating is used. |