1. NoisyOffice: Corpus intended to do cleaning (or binarization) and enhancement of noisy grayscale printed text images using supervised learning methods. Noisy images and their corresponding ground truth provided. 2. Gastrointestinal Lesions in Regular Colonoscopy: This dataset contains features extracted from colonoscopy videos used to detect gastrointestinal lesions. It contains 76 lesions: 15 serrated adenomas, 21 hyperplastic lesions and 40 adenoma. 3. APS Failure at Scania Trucks: The datasets' positive class consists of component failures for a specific component of the APS system. The negative class consists of trucks with failures for components not related to the APS. 4. Dynamic Features of VirusShare Executables: This dataset contains the dynamic features of 107,888 executables, collected by VirusShare from Nov/2010 to Jul/2014. 5. Gas sensor arrays in open sampling settings: The dataset contains 18000 time-series recordings from a chemical detection platform at six different locations in a wind tunnel facility in response to ten high-priority chemical gaseous substances 6. Detect Malware Types: Provide a short description of your data set (less than 200 characters). 7. Northix: Northix is designed to be a schema matching benchmark problem for data integration of two entity relationship databases. 8. DeliciousMIL: A Data Set for Multi-Label Multi-Instance Learning with Instance Labels: This dataset includes 1) 12234 documents (8251 training, 3983 test) extracted from DeliciousT140 dataset, 2) class labels for all documents, 3) labels for a subset of sentences of the test documents. 9. Victorian Era Authorship Attribution: To create the largest authorship attribution dataset, we extracted works of 50 well-known authors. To have a non-exhaustive learning, in training there are 45 authors whereas, in the testing, it's 50 |