Center for Machine Learning and Intelligent Systems
About  Citation Policy  Donate a Data Set  Contact


Repository Web            Google
View ALL Data Sets

Somerville Happiness Survey Data Set
Download: Data Folder, Data Set Description

Abstract: A data extract of a non-federal dataset posted here [Web Link]

Data Set Characteristics:  

N/A

Number of Instances:

143

Area:

Life

Attribute Characteristics:

Integer

Number of Attributes:

7

Date Donated

2018-05-24

Associated Tasks:

Classification

Missing Values?

N/A

Number of Web Hits:

563


Source:

Waldemar W. Koczkodaj, wkoczkodaj@gmail, independent researcher.


Data Set Information:

It is a case of supervised learning with the use of Receiver Operating Characteristic (ROC) to select the minimal set of attributes preserving or increasing predictability of the data.


Attribute Information:

D = decision attribute (D) with values 0 (unhappy) and 1 (happy)
X1 = the availability of information about the city services
X2 = the cost of housing
X3 = the overall quality of public schools
X4 = your trust in the local police
X5 = the maintenance of streets and sidewalks
X6 = the availability of social community events

Attributes X1 to X6 have values 1 to 5.


Relevant Papers:

W.W. Koczkodaj, T. Kakiashvili, A. Szymańska, J. Montero-Marin, R. Araya, J. Garcia-Campayo, K. Rutkowski, D. Strzałka, How to reduce the number of rating scale items without predictability loss? Scientometrics, 111(2): 581–593, 2017.



Citation Request:

For the method:
W.W. Koczkodaj, T. Kakiashvili, A. Szymańska, J. Montero-Marin, R. Araya, J. Garcia-Campayo, K. Rutkowski, D. Strzałka, How to reduce the number of rating scale items without predictability loss? Scientometrics, 111(2): 581–593, 2017.


Supported By:

 In Collaboration With:

About  ||  Citation Policy  ||  Donation Policy  ||  Contact  ||  CML