Center for Machine Learning and Intelligent Systems
About  Citation Policy  Donate a Data Set  Contact

Repository Web            Google
View ALL Data Sets

Statlog (Heart) Data Set
Download: Data Folder, Data Set Description

Abstract: This dataset is a heart disease database similar to a database already present in the repository (Heart Disease databases) but in a slightly different form

Data Set Characteristics:  


Number of Instances:




Attribute Characteristics:

Categorical, Real

Number of Attributes:


Date Donated


Associated Tasks:


Missing Values?


Number of Web Hits:




Data Set Information:

Cost Matrix

_______ abse pres
absence 0 1
presence 5 0

where the rows represent the true values and the columns the predicted.

Attribute Information:

Attribute Information:
-- 1. age
-- 2. sex
-- 3. chest pain type (4 values)
-- 4. resting blood pressure
-- 5. serum cholesterol in mg/dl
-- 6. fasting blood sugar > 120 mg/dl
-- 7. resting electrocardiographic results (values 0,1,2)
-- 8. maximum heart rate achieved
-- 9. exercise induced angina
-- 10. oldpeak = ST depression induced by exercise relative to rest
-- 11. the slope of the peak exercise ST segment
-- 12. number of major vessels (0-3) colored by flourosopy
-- 13. thal: 3 = normal; 6 = fixed defect; 7 = reversable defect

Attributes types

Real: 1,4,5,8,10,12
Binary: 2,6,9

Variable to be predicted
Absence (1) or presence (2) of heart disease

Relevant Papers:


Papers That Cite This Data Set1:

Gavin Brown. Diversity in Neural Network Ensembles. The University of Birmingham. 2004. [View Context].

Igor Kononenko and Edvard Simec and Marko Robnik-Sikonja. Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF. Appl. Intell, 7. 1997. [View Context].

Alexander K. Seewald. Dissertation Towards Understanding Stacking Studies of a General Ensemble Learning Scheme ausgefuhrt zum Zwecke der Erlangung des akademischen Grades eines Doktors der technischen Naturwissenschaften. [View Context].

Elena Smirnova and Ida G. Sprinkhuizen-Kuyper and I. Nalbantis and b. ERIM and Universiteit Rotterdam. Unanimous Voting using Support Vector Machines. IKAT, Universiteit Maastricht. [View Context].

Citation Request:

Please refer to the Machine Learning Repository's citation policy

[1] Papers were automatically harvested and associated with this data set, in collaboration with

Supported By:

 In Collaboration With:

About  ||  Citation Policy  ||  Donation Policy  ||  Contact  ||  CML