Restaurant & consumer data
Donated on 8/3/2012
The dataset was obtained from a recommender system prototype. The task was to generate a top-n list of restaurants according to the consumer preferences.
Dataset Characteristics
Multivariate
Subject Area
Computer Science
Associated Tasks
-
Feature Type
-
# Instances
138
# Features
-
Dataset Information
Additional Information
Two approaches were tested: a collaborative filter technique and a contextual approach. (i) The collaborative filter technique used only one file i.e., rating_final.csv that comprises the user, item and rating attributes. (ii) The contextual approach generated the recommendations using the remaining eight data files.
Has Missing Values?
Yes
Variables Table
Variable Name | Role | Type | Description | Units | Missing Values |
---|---|---|---|---|---|
no | |||||
no | |||||
no | |||||
no | |||||
no | |||||
no | |||||
no | |||||
no | |||||
no | |||||
no |
0 to 10 of 47
Additional Variable Information
Files, instances and attributes Number of Files: 9 Restaurants 1 chefmozaccepts.csv 2 chefmozcuisine.csv 3 chefmozhours4.csv 4 chefmozparking.csv 5 geoplaces2.csv Consumers 6 usercuisine.csv 7 userpayment.csv 8 userprofile.csv User-Item-Rating 9 rating_final.csv %--- Description format File name Number of instances Number of attributes attribute: Type, Number of missing values (if any), Number of values [list of values] %--- 1 chefmozaccepts.csv Instances: 1314 Attributes: 2 placeID: Nominal Rpayment: Nominal, 12 [cash,VISA,MasterCard-Eurocard,American_Express,bank_debit_cards,checks,Discover,Carte_Blanche,Diners_Club,Visa,Japan_Credit_Bureau,gift_certificates] 2 chefmozcuisine.csv Instances: 916 Attributes: 2 placeID: Nominal Rcuisine: Nominal, 59 [Afghan,African,American,Armenian,Asian,Bagels,Bakery,Bar,Bar_Pub_Brewery,Barbecue,Brazilian,Breakfast-Brunch,Burgers,Cafe-Coffee_Shop, Cafeteria,California,Caribbean,Chinese,Contemporary,Continental-European,Deli-Sandwiches,Dessert-Ice_Cream,Diner,Dutch-Belgian,Eastern_European,Ethiopian,Family,Fast_Food,Fine_Dining,French,,Game,German,Greek,Hot_Dogs, International,Italian,Japanese,Juice,Korean,Latin_American,Mediterranean,Mexican,Mongolian,Organic-Healthy,Persian, Pizzeria,Polish,Regional,Seafood,Soup,Southern,Southwestern,Spanish,Steaks,Sushi,Thai,Turkish,Vegetarian,Vietnamese] 3 chefmozhours4.csv Instances: 2339 Attributes: 3 placeID: Nominal hours: Nominal, Range:00:00-23:30 days:Nominal, 7 [Mon;Tue;Wed;Thu;Fri;Sat;Sun] 4 chefmozparking.csv Instances: 702 Attributes: 2 placeID: Nominal parking_lot:Nominal, 7[public,none,yes,valet_parking,free,street,validated_parking] 5 geoplaces2.csv Instances: 130 Attributes: 21 placeID: Nominal latitude: Numeric longitude: Numeric the_geom_meter: Nominal (Geospatial) name: Nominal address: Nominal,Missing: 27 city: Nominal, Missing: 18 state: Nominal, Missing: 18 country: Nominal, Missing: 28 fax: Numeric, Missing: 130 zip: Nominal,Missing: 74 alcohol: Nominal, Values: 3 [No_Alcohol_Served,Wine_Beer,Full_Bar] smoking_area: Nominal, 5 [none,only_at_bar,permitted,section,not_permitted] dress_code: Nominal, 3 [informal,casual,formal] accessibility: Nominal, 3 [no_accessibility,completely,partially] price: Nominal, 3 [medium,low,high] url: Nominal, Missing: 116 Rambience: Nominal, 2 [familiar,quiet] franchise: Nominal, 2 [t,f] area: Nominal, 2 [open,closed] other_services: Nominal, 3 [none,internet,variety] 6 rating_final.csv Instances: 1161 Attributes: 5 userID: Nominal placeID: Nominal rating: Numeric, 3 [0,1,2] food_rating: Numeric, 3 [0,1,2] service_rating: Numeric, 3 [0,1,2] 7 usercuisine.csv Instances: 330 Attributes: 2 userID: Nominal Rcuisine: Nominal, 103 [Afghan,African,American,Armenian,Asian,Australian,Austrian,Bagels,Bakery,Bar,Bar_Pub_Brewery,Barbecue,Basque,Brazilian,Breakfast-Brunch,British,Burgers,Burmese,Cafe-Coffee_Shop,Cafeteria,Cajun-Creole,California,Cambodian,Canadian,Caribbean,Chilean,Chinese,Contemporary,Continental-European,Cuban,Deli-Sandwiches,Dessert-Ice_Cream,Dim_Sum,Diner,Doughnuts,Dutch-Belgian,Eastern_European,Eclectic,Ethiopian,Family,Fast_Food,Filipino,Fine_Dining,French,Fusion,Game,German,Greek,Hawaiian,Hot_Dogs,Hungarian,Indian-Pakistani,Indigenous,Indonesian,International,Irish,Israeli,Italian,Jamaican,Japanese,Juice,Korean,Kosher,Latin_American,Lebanese,Malaysian,Mediterranean,Mexican,Middle_Eastern,Mongolian,Moroccan,North_African,Organic-Healthy,Pacific_Northwest,Pacific_Rim,Persian,Peruvian,Pizzeria,Polish,Polynesian,Portuguese,Regional,Romanian,Russian-Ukrainian,Scandinavian,Seafood,Soup,Southeast_Asian,Southern,Southwestern,Spanish,Steaks,Sushi,Swiss,Tapas,Tea_House,Tex-Mex,Thai,Tibetan,Tunisian,Turkish,Vegetarian,Vietnamese] 8 userpayment.csv Instances: 177 Attributes: 2 userID: Nominal Upayment: Nominal, 5 [cash,bank_debit_cards,MasterCard-Eurocard,VISA,American_Express] 9 userprofile Instances: 138 Attributes: 19 userID: Nominal latitude: Numeric longitude: Numeric the_geom_meter: Nominal (Geospatial) smoker: Nominal, Missing: 3, 2 [false,true] drink_level: Nominal, 3 [abstemious,social drinker,casual drinker] dress_preference:Nominal, Missing: 5, 4 [informal,formal,no preference,elegant] ambience: Nominal, Missing: 6, 3 [family,friends,solitary] transport: Nominal, Missing: 7, 3 [on foot,public,car owner] marital_status: Nominal, Missing: 4, 3 [single,married,widow] hijos: Nominal, Missing: 11, 3 [independent,kids,dependent] birth_year: Nominal interest: Nominal, 5 [variety,technology,none,retro,eco-friendly] personality: Nominal, 4 [thrifty-protector,hunter-ostentatious,hard-worker,conformist] religion: Nominal, 5 [none,Catholic,Christian,Mormon,Jewish] activity: Nominal, Missing: 7, 4 [student,professional,unemployed,working-class] color: Nominal, 8 [black,red,blue,green,purple,orange,yellow,white] weight: Numeric budget: Nominal, Missing: 7, 3 [medium,low,high] height: Numeric
Dataset Files
File | Size |
---|---|
chefmozhours4.csv | 71.6 KB |
geoplaces2.csv | 29.5 KB |
chefmozaccepts.csv | 22.1 KB |
rating_final.csv | 21.6 KB |
userprofile.csv | 20.8 KB |
0 to 5 of 10
Reviews
There are no reviews for this dataset yet.
pip install ucimlrepo
from ucimlrepo import fetch_ucirepo # fetch dataset restaurant_consumer_data = fetch_ucirepo(id=232) # data (as pandas dataframes) X = restaurant_consumer_data.data.features y = restaurant_consumer_data.data.targets # metadata print(restaurant_consumer_data.metadata) # variable information print(restaurant_consumer_data.variables)
Medelln, R. & Serna, J. (2011). Restaurant & consumer data [Dataset]. UCI Machine Learning Repository. https://doi.org/10.24432/C5DP41.
Creators
Rafael Medelln
Juan Serna
DOI
License
This dataset is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
This allows for the sharing and adaptation of the datasets for any purpose, provided that the appropriate credit is given.