
OCT data & Color Fundus Images of Left & Right Eyes
Donated on 10/31/2016
This dataset contains OCT data (in mat format) and color fundus data (in jpg format) of left & right eyes of 50 healthy persons.
Dataset Characteristics
Multivariate
Subject Area
Computer Science
Associated Tasks
Classification
Feature Type
Real
# Instances
50
# Features
-
Dataset Information
Additional Information
OCT data & Color Fundus Images of Left & Right Eyes : This dataset contains OCT data (in mat format) and color fundus data (in jpg format) of left & right eyes of 50 healthy persons. Each volunteer's folder includes color fundus images (.jpg) and OCT data (.mat) of the right and left eyes.
Has Missing Values?
No
Variables Table
Variable Name | Role | Type | Description | Units | Missing Values |
---|---|---|---|---|---|
no | |||||
no |
0 to 2 of 2
Additional Variable Information
OCT data & Color Fundus Images of Left & Right Eyes : This dataset contains OCT data (in mat format) and color fundus data (in jpg format) of left & right eyes of 50 healthy persons. Each volunteer's folder includes color fundus images (.jpg) and OCT data (.mat) of the right and left eyes.
Dataset Files
File | Size |
---|---|
HTOSMHP8 | 20.2 KB |
Reviews
There are no reviews for this dataset yet.
pip install ucimlrepo
from ucimlrepo import fetch_ucirepo # fetch dataset oct_data_color_fundus_images_of_left_right_eyes = fetch_ucirepo(id=430) # data (as pandas dataframes) X = oct_data_color_fundus_images_of_left_right_eyes.data.features y = oct_data_color_fundus_images_of_left_right_eyes.data.targets # metadata print(oct_data_color_fundus_images_of_left_right_eyes.metadata) # variable information print(oct_data_color_fundus_images_of_left_right_eyes.variables)
Akhlagi, T. (2014). OCT data & Color Fundus Images of Left & Right Eyes [Dataset]. UCI Machine Learning Repository. https://doi.org/10.24432/C5KP5Z.
Creators
Tahereh Akhlagi
DOI
License
This dataset is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
This allows for the sharing and adaptation of the datasets for any purpose, provided that the appropriate credit is given.