Avila
Donated on 6/19/2018
The Avila data set has been extracted from 800 images of the 'Avila Bible', an XII century giant Latin copy of the Bible. The prediction task consists in associating each pattern to a copyist.
Dataset Characteristics
Multivariate
Subject Area
Computer Science
Associated Tasks
Classification
Feature Type
Real
# Instances
20867
# Features
-
Dataset Information
Additional Information
Data have been normalized by using the Z-normalization method and divided into two data sets: a training set containing 10430 samples, and a test set containing the 10437 samples. CLASS DISTRIBUTION (training set) A: 4286 B: 5 C: 103 D: 352 E: 1095 F: 1961 G: 446 H: 519 I: 831 W: 44 X: 522 Y: 266
Has Missing Values?
No
Variables Table
Variable Name | Role | Type | Description | Units | Missing Values |
---|---|---|---|---|---|
no | |||||
no | |||||
no | |||||
no | |||||
no | |||||
no | |||||
no | |||||
no | |||||
no | |||||
no |
0 to 10 of 10
Additional Variable Information
F1: intercolumnar distance F2: upper margin F3: lower margin F4: exploitation F5: row number F6: modular ratio F7: interlinear spacing F8: weight F9: peak number F10: modular ratio/ interlinear spacing Class: A, B, C, D, E, F, G, H, I, W, X, Y
Dataset Files
File | Size |
---|---|
avila/avila-ts.txt | 976.5 KB |
avila/avila-tr.txt | 975.9 KB |
avila/avila-description.txt | 1.6 KB |
Reviews
There are no reviews for this dataset yet.
pip install ucimlrepo
from ucimlrepo import fetch_ucirepo # fetch dataset avila = fetch_ucirepo(id=459) # data (as pandas dataframes) X = avila.data.features y = avila.data.targets # metadata print(avila.metadata) # variable information print(avila.variables)
Stefano, C., Fontanella, F., Maniaci, M., & Freca, A. (2018). Avila [Dataset]. UCI Machine Learning Repository. https://doi.org/10.24432/C5K02X.
Creators
Claudio Stefano
Francesco Fontanella
Marilena Maniaci
Alessandra Freca
DOI
License
This dataset is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
This allows for the sharing and adaptation of the datasets for any purpose, provided that the appropriate credit is given.