Student Academics Performance

Donated on 9/15/2018

The dataset tried to find the end semester percentage prediction based on different social, economic and academic attributes.

Dataset Characteristics

Multivariate

Subject Area

Computer Science

Associated Tasks

Classification

Feature Type

-

# Instances

300

# Features

22

Dataset Information

Additional Information

Student Academic Performance Dataset

Has Missing Values?

No

Variable Information

@ATTRIBUTE ge {M,F} @ATTRIBUTE cst {G,ST,SC,OBC,MOBC} @ATTRIBUTE tnp {Best,Vg,Good,Pass,Fail} @ATTRIBUTE twp {Best,Vg,Good,Pass,Fail} @ATTRIBUTE iap {Best,Vg,Good,Pass,Fail} @ATTRIBUTE esp {Best,Vg,Good,Pass,Fail} @ATTRIBUTE arr {Y,N} @ATTRIBUTE ms {Married,Unmarried} @ATTRIBUTE ls {T,V} @ATTRIBUTE as {Free,Paid} @ATTRIBUTE fmi {Vh,High,Am,Medium,Low} @ATTRIBUTE fs {Large,Average,Small} @ATTRIBUTE fq {Il,Um,10,12,Degree,Pg} @ATTRIBUTE mq {Il,Um,10,12,Degree,Pg} @ATTRIBUTE fo {Service,Business,Retired,Farmer,Others} @ATTRIBUTE mo {Service,Business,Retired,Housewife,Others} @ATTRIBUTE nf {Large,Average,Small} @ATTRIBUTE sh {Good,Average,Poor} @ATTRIBUTE ss {Govt,Private} @ATTRIBUTE me {Eng,Asm,Hin,Ben} @ATTRIBUTE tt {Large,Average,Small} @ATTRIBUTE atd {Good,Average,Poor}

Download
0 citations
5369 views

Creators

Sadiq Hussain

License

By using the UCI Machine Learning Repository, you acknowledge and accept the cookies and privacy practices used by the UCI Machine Learning Repository.

Read Policy