HCV data

Donated on 6/9/2020

The data set contains laboratory values of blood donors and Hepatitis C patients and demographic values like age.

Dataset Characteristics

Multivariate

Subject Area

Health and Medicine

Associated Tasks

Classification, Clustering

Feature Type

Integer, Real

# Instances

615

# Features

12

Dataset Information

What do the instances in this dataset represent?

Instances are patients

Additional Information

The target attribute for classification is Category (blood donors vs. Hepatitis C, including its progress: 'just' Hepatitis C, Fibrosis, Cirrhosis).

Has Missing Values?

Yes

Introductory Paper

Using machine learning techniques to generate laboratory diagnostic pathways—a case study

By Georg F. Hoffmann, A. Bietenbeck, R. Lichtinghagen, F. Klawonn. 2018

Published in Journal of Laboratory and Precision Medicine

Variables Table

Variable NameRoleTypeDemographicDescriptionUnitsMissing Values
IDIDIntegerPatient IDno
AgeFeatureIntegerAgeyearsno
SexFeatureBinarySexno
ALBFeatureContinuousyes
ALPFeatureContinuousyes
ASTFeatureContinuousyes
BILFeatureContinuousno
CHEFeatureContinuousno
CHOLFeatureContinuousyes
CREAFeatureContinuousno

0 to 10 of 14

Additional Variable Information

All attributes except Category and Sex are numerical. The laboratory data are the attributes 5-14. 1) X (Patient ID/No.) 2) Category (diagnosis) (values: '0=Blood Donor', '0s=suspect Blood Donor', '1=Hepatitis', '2=Fibrosis', '3=Cirrhosis') 3) Age (in years) 4) Sex (f,m) 5) ALB 6) ALP 7) ALT 8) AST 9) BIL 10) CHE 11) CHOL 12) CREA 13) GGT 14) PROT

Reviews

There are no reviews for this dataset yet.

Login to Write a Review
Download
1 citations
27546 views

Creators

Ralf Lichtinghagen

lichtinghagen.ralf@mh-hannover.de

Institute of Clinical Chemistry; Medical University Hannover (MHH)

Frank Klawonn

frank.klawonn@helmholtz-hzi.de

Helmholtz Centre for Infection Research

Georg Hoffmann

georg.hoffmann@trillium.de

Trillium GmbH

License

By using the UCI Machine Learning Repository, you acknowledge and accept the cookies and privacy practices used by the UCI Machine Learning Repository.

Read Policy