Audiology (Standardized)

Donated on 8/17/1992

Standardized version of the original audiology database

Dataset Characteristics


Subject Area

Life Science

Associated Tasks


Feature Type


# Instances


# Features


Dataset Information

Additional Information

This database is a standardized version of the original audiology database (see audiology.* in this directory). The non-standard set of attributes have been converted to a standard set of attributes according to the rules that follow. * Each property that appears anywhere in the original .data or .test file has been represented as a separate attribute in this file. * A property such as age_gt_60 is represented as a boolean attribute with values f and t. * In most cases, a property of the form x(y) is represented as a discrete attribute x() whose possible values are the various y's; air() is an example. There are two exceptions: ** when only one value of y appears anywhere, e.g. static(normal). In this case, x_y appears as a boolean attribute. ** when one case can have two or more values of x, e.g. history(..). All possible values of history are treated as separate boolean attributes. * Since boolean attributes only appear as positive conditions, each boolean attribute is assumed to be false unless noted as true. The value of multi-value discrete attributes taken as unknown ("?") unless a value is specified. * The original case identifications, p1 to p200 in the .data file and t1 to t26 in the .test file, have been added as a unique identifier attribute. [Note: in the original .data file, p165 has a repeated specification of o_ar_c(normal); p166 has repeated specification of speech(normal) and conflicting values air(moderate) and air(mild). No other problems with the original data were noted.]

Has Missing Values?


Variables Table

Variable NameRoleTypeDemographicDescriptionUnitsMissing Values

0 to 10 of 69

Additional Variable Information

age_gt_60: f, t. air(): mild,moderate,severe,normal,profound. airBoneGap: f, t. ar_c(): normal,elevated,absent. ar_u(): normal,absent,elevated. bone(): mild,moderate,normal,unmeasured. boneAbnormal: f, t. bser(): normal,degraded. history_buzzing: f, t. history_dizziness: f, t. history_fluctuating: f, t. history_fullness: f, t. history_heredity: f, t. history_nausea: f, t. history_noise: f, t. history_recruitment: f, t. history_ringing: f, t. history_roaring: f, t. history_vomiting: f, t. late_wave_poor: f, t. m_at_2k: f, t. m_cond_lt_1k: f, t. m_gt_1k: f, t. m_m_gt_2k: f, t. m_m_sn: f, t. m_m_sn_gt_1k: f, t. m_m_sn_gt_2k: f, t. m_m_sn_gt_500: f, t. m_p_sn_gt_2k: f, t. m_s_gt_500: f, t. m_s_sn: f, t. m_s_sn_gt_1k: f, t. m_s_sn_gt_2k: f, t. m_s_sn_gt_3k: f, t. m_s_sn_gt_4k: f, t. m_sn_2_3k: f, t. m_sn_gt_1k: f, t. m_sn_gt_2k: f, t. m_sn_gt_3k: f, t. m_sn_gt_4k: f, t. m_sn_gt_500: f, t. m_sn_gt_6k: f, t. m_sn_lt_1k: f, t. m_sn_lt_2k: f, t. m_sn_lt_3k: f, t. middle_wave_poor: f, t. mod_gt_4k: f, t. mod_mixed: f, t. mod_s_mixed: f, t. mod_s_sn_gt_500: f, t. mod_sn: f, t. mod_sn_gt_1k: f, t. mod_sn_gt_2k: f, t. mod_sn_gt_3k: f, t. mod_sn_gt_4k: f, t. mod_sn_gt_500: f, t. notch_4k: f, t. notch_at_4k: f, t. o_ar_c(): normal,elevated,absent. o_ar_u(): normal,absent,elevated. s_sn_gt_1k: f, t. s_sn_gt_2k: f, t. s_sn_gt_4k: f, t. speech(): normal,good,very_good,very_poor,poor,unmeasured. static_normal: f, t. tymp(): a,as,b,ad,c. viith_nerve_signs: f, t. wave_V_delayed: f, t. waveform_ItoV_prolonged: f, t. indentifier (unique for each instance) class: cochlear_unknown,mixed_cochlear_age_fixation,poss_central mixed_cochlear_age_otitis_media,mixed_poss_noise_om, cochlear_age,normal_ear,cochlear_poss_noise,cochlear_age_and_noise, acoustic_neuroma,mixed_cochlear_unk_ser_om,conductive_discontinuity, retrocochlear_unknown,conductive_fixation,bells_palsy, cochlear_noise_and_heredity,mixed_cochlear_unk_fixation, otitis_media,possible_menieres,possible_brainstem_disorder, cochlear_age_plus_poss_menieres,mixed_cochlear_age_s_om, mixed_cochlear_unk_discontinuity,mixed_poss_central_om

0 citations




By using the UCI Machine Learning Repository, you acknowledge and accept the cookies and privacy practices used by the UCI Machine Learning Repository.

Read Policy