Center for Machine Learning and Intelligent Systems
About  Citation Policy  Donate a Data Set  Contact


Repository Web            Google
View ALL Data Sets

× Check out the beta version of the new UCI Machine Learning Repository we are currently testing! Contact us if you have any issues, questions, or concerns. Click here to try out the new site.

Chronic_Kidney_Disease Data Set
Download: Data Folder, Data Set Description

Abstract: This dataset can be used to predict the chronic kidney disease and it can be collected from the hospital nearly 2 months of period.

Data Set Characteristics:  

Multivariate

Number of Instances:

400

Area:

N/A

Attribute Characteristics:

Real

Number of Attributes:

25

Date Donated

2015-07-03

Associated Tasks:

Classification

Missing Values?

Yes

Number of Web Hits:

201444


Source:

Source:
Dr.P.Soundarapandian.M.D.,D.M
(Senior Consultant Nephrologist),
Apollo Hospitals,
Managiri,
Madurai Main Road,
Karaikudi,
Tamilnadu,
India.

Creator:
L.Jerlin Rubini(Research Scholar)
Alagappa University,
EmailId :jel.jerlin '@' gmail.com
ContactNo :+91-9597231281

Guided by:
Dr.P.Eswaran Assistant Professor,
Department of Computer Science and Engineering,
Alagappa University,
Karaikudi,
Tamilnadu,
India.
Emailid:eswaranperumal '@' gmail.com


Data Set Information:

We use the following representation to collect the dataset
age - age
bp - blood pressure
sg - specific gravity
al - albumin
su - sugar
rbc - red blood cells
pc - pus cell
pcc - pus cell clumps
ba - bacteria
bgr - blood glucose random
bu - blood urea
sc - serum creatinine
sod - sodium
pot - potassium
hemo - hemoglobin
pcv - packed cell volume
wc - white blood cell count
rc - red blood cell count
htn - hypertension
dm - diabetes mellitus
cad - coronary artery disease
appet - appetite
pe - pedal edema
ane - anemia
class - class


Attribute Information:

We use 24 + class = 25 ( 11 numeric ,14 nominal)
1.Age(numerical)
age in years
2.Blood Pressure(numerical)
bp in mm/Hg
3.Specific Gravity(nominal)
sg - (1.005,1.010,1.015,1.020,1.025)
4.Albumin(nominal)
al - (0,1,2,3,4,5)
5.Sugar(nominal)
su - (0,1,2,3,4,5)
6.Red Blood Cells(nominal)
rbc - (normal,abnormal)
7.Pus Cell (nominal)
pc - (normal,abnormal)
8.Pus Cell clumps(nominal)
pcc - (present,notpresent)
9.Bacteria(nominal)
ba - (present,notpresent)
10.Blood Glucose Random(numerical)
bgr in mgs/dl
11.Blood Urea(numerical)
bu in mgs/dl
12.Serum Creatinine(numerical)
sc in mgs/dl
13.Sodium(numerical)
sod in mEq/L
14.Potassium(numerical)
pot in mEq/L
15.Hemoglobin(numerical)
hemo in gms
16.Packed Cell Volume(numerical)
17.White Blood Cell Count(numerical)
wc in cells/cumm
18.Red Blood Cell Count(numerical)
rc in millions/cmm
19.Hypertension(nominal)
htn - (yes,no)
20.Diabetes Mellitus(nominal)
dm - (yes,no)
21.Coronary Artery Disease(nominal)
cad - (yes,no)
22.Appetite(nominal)
appet - (good,poor)
23.Pedal Edema(nominal)
pe - (yes,no)
24.Anemia(nominal)
ane - (yes,no)
25.Class (nominal)
class - (ckd,notckd)


Relevant Papers:

N/A



Citation Request:

Please refer to the Machine Learning Repository's citation policy


Supported By:

 In Collaboration With:

About  ||  Citation Policy  ||  Donation Policy  ||  Contact  ||  CML