Exasens

Donated on 4/21/2020

This repository introduces a novel dataset for the classification of 4 groups of respiratory diseases: Chronic Obstructive Pulmonary Disease (COPD), asthma, infected, and Healthy Controls (HC).

Dataset Characteristics

Multivariate

Subject Area

Health and Medicine

Associated Tasks

Classification, Clustering

Feature Type

Integer

# Instances

399

# Features

4

Dataset Information

Additional Information

The Exasens dataset includes demographic information on 4 groups of saliva samples (COPD-Asthma-Infected-HC) collected in the frame of a joint research project, Exasens (https://www.leibniz-healthtech.de/en/research/projects/bmbf-project-exasens/), at the Research Center Borstel, BioMaterialBank Nord (Borstel, Germany). The sampling procedure of the patient materials was approved by the local ethics committee of the University of Luebeck under the approval number AZ-16-167 and a written informed consent was obtained from all subjects. A permittivity biosensor, developed at IHP Microelectronics (Frankfurt Oder, Germany), was used for the dielectric characterization of the saliva samples for classification purposes (https://doi.org/10.3390/healthcare7010011). Definition of 4 sample groups included within the Exasens dataset: (I) Outpatients and hospitalized patients with COPD without acute respiratory infection (COPD). (II) Outpatients and hospitalized patients with asthma without acute respiratory infections (Asthma). (III) Patients with respiratory infections, but without COPD or asthma (Infected). (IV) Healthy controls without COPD, asthma, or any respiratory infection (HC).

Has Missing Values?

Yes

Variable Information

1- Diagnosis (COPD-HC-Asthma-Infected) 2- ID 3- Age 4- Gender (1=male, 0=female) 5- Smoking Status (1=Non-smoker, 2=Ex-smoker, 3=Active-smoker) 6- Saliva Permittivity: a) Imaginary part (Min(Δ)=Absolute minimum value, Avg.(Δ)=Average) b) Real part (Min(Δ)=Absolute minimum value, Avg.(Δ)=Average)

Dataset Files

FileSize
Exasens.csv13.7 KB

Reviews

There are no reviews for this dataset yet.

Login to Write a Review
Download (13.8 KB)
0 citations
5896 views

License

By using the UCI Machine Learning Repository, you acknowledge and accept the cookies and privacy practices used by the UCI Machine Learning Repository.

Read Policy