Center for Machine Learning and Intelligent Systems
About  Citation Policy  Donate a Data Set  Contact


Repository Web            Google
View ALL Data Sets

Person Classification Gait Data Data Set
Download: Data Folder, Data Set Description

Abstract: Gait is considered a biometric criterion. Therefore, we tried to classify people with gait analysis with this gait data set.

Data Set Characteristics:  

Multivariate

Number of Instances:

48

Area:

Computer

Attribute Characteristics:

Real

Number of Attributes:

321

Date Donated

2020-03-02

Associated Tasks:

Classification

Missing Values?

N/A

Number of Web Hits:

151


Source:

Dr. Abdülkadir Gümüşçü, agumuscu '@' harran.edu.tr, Harran University Electrical and Electronics Engineering Department, Şanlıurfa, Turkey


Data Set Information:

This data set was created by calculating the walking parameters of a total of 16 different volunteers, 7 female and 9 male. The volunteers of 16 volunteers ranged between 20 and 34 years old, and their weight ranged from 53 to 95. In order to calculate each walking parameter, people were asked to walk the 30-meter long course for three rounds. The shared file contains X and Y data. X represents gait data and y represents person information for the relevant sample.


Attribute Information:

Gait Data consists of the following parameters.
Basic Parameters (Speed, Variability, Symmetry), Temporary Parameters (Heel Press Time, Cycle Time, Cadence, Posture, Oscillation, Loading, Foot Press, Thrust, Double Support), Spatial Parameters (Step Length, Step Speed, Peak Angle Speed, Maximum Swing Speed, Rotation Angle, Step Angle, Lift Angle, Swing Width, 3D Path Length), Height Parameters (Maximum Heel Height, Maximum Finger Tip Height, Minimum Finger Tip Height)


Relevant Papers:

GÜMÜŞÇÜ, A . 'Giyilebilir Yürüyüş Analiz Sensörü ile Kişi Sınıflandırmasının Öznitelik Seçme Algoritmaları ile İyileştirilmesi'. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 31 (2019 ): 463-471.
A. Gümüşçü, K. Karadağ, M. Çalişkan, M. E. Tenekecı and D. Akaslan, 'Gender classification via wearable gait analysis sensor,' 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, 2018, pp. 1-4.



Citation Request:

GÜMÜŞÇÜ, A . 'Giyilebilir Yürüyüş Analiz Sensörü ile Kişi Sınıflandırmasının Öznitelik Seçme Algoritmaları ile İyileştirilmesi'. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 31 (2019 ): 463-471


Supported By:

 In Collaboration With:

About  ||  Citation Policy  ||  Donation Policy  ||  Contact  ||  CML