Center for Machine Learning and Intelligent Systems
About  Citation Policy  Donate a Data Set  Contact


Repository Web            Google
View ALL Data Sets

× Check out the beta version of the new UCI Machine Learning Repository we are currently testing! Contact us if you have any issues, questions, or concerns. Click here to try out the new site.

QSAR aquatic toxicity Data Set
Download: Data Folder, Data Set Description

Abstract: Data set containing values for 8 attributes (molecular descriptors) of 546 chemicals used to predict quantitative acute aquatic toxicity towards Daphnia Magna..

Data Set Characteristics:  

Multivariate

Number of Instances:

546

Area:

Physical

Attribute Characteristics:

Real

Number of Attributes:

9

Date Donated

2019-09-23

Associated Tasks:

Regression

Missing Values?

N/A

Number of Web Hits:

22718


Source:

Davide Ballabio (davide.ballabio '@' unimib.it), Matteo Cassotti, Viviana Consonni, Roberto Todeschini, Milano Chemometrics and QSAR Research Group (http://www.michem.unimib.it/), Università degli Studi Milano - Bicocca, Milano (Italy)


Data Set Information:

This dataset was used to develop quantitative regression QSAR models to predict acute aquatic toxicity towards the fish Pimephales promelas (fathead minnow) on a set of 908 chemicals. to predict acute aquatic toxicity towards Daphnia Magna. LC50 data, which is the concentration that causes death in 50% of test D. magna over a test duration of 48 hours, was used as model response. The model comprised 8 molecular descriptors: TPSA(Tot) (Molecular properties), SAacc (Molecular properties), H-050 (Atom-centred fragments), MLOGP (Molecular properties), RDCHI (Connectivity indices), GATS1p (2D autocorrelations), nN (Constitutional indices), C-040 (Atom-centred fragments). Details can be found in the quoted reference: M. Cassotti, D. Ballabio, V. Consonni, A. Mauri, I. V. Tetko, R. Todeschini (2014). Prediction of acute aquatic toxicity towards daphnia magna using GA-kNN method, Alternatives to Laboratory Animals (ATLA), 42,31:41; doi: 10.1177/026119291404200106


Attribute Information:

8 molecular descriptors and 1 quantitative experimental response:
1) TPSA(Tot)
2) SAacc
3) H-050
4) MLOGP
5) RDCHI
6) GATS1p
7) nN
8) C-040
9) quantitative response, LC50 [-LOG(mol/L)]


Relevant Papers:

M. Cassotti, D. Ballabio, V. Consonni, A. Mauri, I. V. Tetko, R. Todeschini (2014). Prediction of acute aquatic toxicity towards daphnia magna using GA-kNN method, Alternatives to Laboratory Animals (ATLA), 42,31:41; doi: 10.1177/026119291404200106



Citation Request:

Please, cite the following paper if you publish results based on the QSAR aquatic toxicity dataset: M. Cassotti, D. Ballabio, V. Consonni, A. Mauri, I. V. Tetko, R. Todeschini (2014). Prediction of acute aquatic toxicity towards daphnia magna using GA-kNN method, Alternatives to Laboratory Animals (ATLA), 42,31:41; doi: 10.1177/026119291404200106


Supported By:

 In Collaboration With:

About  ||  Citation Policy  ||  Donation Policy  ||  Contact  ||  CML