Center for Machine Learning and Intelligent Systems
About  Citation Policy  Donate a Data Set  Contact

Repository Web            Google
View ALL Data Sets

× Check out the beta version of the new UCI Machine Learning Repository we are currently testing! Contact us if you have any issues, questions, or concerns. Click here to try out the new site.

Statlog (Heart) Data Set
Download: Data Folder, Data Set Description

Abstract: This dataset is a heart disease database similar to a database already present in the repository (Heart Disease databases) but in a slightly different form

Data Set Characteristics:  


Number of Instances:




Attribute Characteristics:

Categorical, Real

Number of Attributes:


Date Donated


Associated Tasks:


Missing Values?


Number of Web Hits:




Data Set Information:

Cost Matrix

_______ abse pres
absence 0 1
presence 5 0

where the rows represent the true values and the columns the predicted.

Attribute Information:

Attribute Information:
-- 1. age
-- 2. sex
-- 3. chest pain type (4 values)
-- 4. resting blood pressure
-- 5. serum cholesterol in mg/dl
-- 6. fasting blood sugar > 120 mg/dl
-- 7. resting electrocardiographic results (values 0,1,2)
-- 8. maximum heart rate achieved
-- 9. exercise induced angina
-- 10. oldpeak = ST depression induced by exercise relative to rest
-- 11. the slope of the peak exercise ST segment
-- 12. number of major vessels (0-3) colored by flourosopy
-- 13. thal: 3 = normal; 6 = fixed defect; 7 = reversable defect

Attributes types

Real: 1,4,5,8,10,12
Binary: 2,6,9

Variable to be predicted
Absence (1) or presence (2) of heart disease

Relevant Papers:


Papers That Cite This Data Set1:

Gavin Brown. Diversity in Neural Network Ensembles. The University of Birmingham. 2004. [View Context].

Igor Kononenko and Edvard Simec and Marko Robnik-Sikonja. Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF. Appl. Intell, 7. 1997. [View Context].

Alexander K. Seewald. Dissertation Towards Understanding Stacking Studies of a General Ensemble Learning Scheme ausgefuhrt zum Zwecke der Erlangung des akademischen Grades eines Doktors der technischen Naturwissenschaften. [View Context].

Elena Smirnova and Ida G. Sprinkhuizen-Kuyper and I. Nalbantis and b. ERIM and Universiteit Rotterdam. Unanimous Voting using Support Vector Machines. IKAT, Universiteit Maastricht. [View Context].

Citation Request:

Please refer to the Machine Learning Repository's citation policy

[1] Papers were automatically harvested and associated with this data set, in collaboration with

Supported By:

 In Collaboration With:

About  ||  Citation Policy  ||  Donation Policy  ||  Contact  ||  CML