Center for Machine Learning and Intelligent Systems
About  Citation Policy  Donate a Data Set  Contact


Repository Web            Google
View ALL Data Sets

Synchronous Machine Data Set Data Set
Download: Data Folder, Data Set Description

Abstract: Synchronous motors (SMs) are AC motors with constant speed.A SM dataset is obtained from a real experimental set. The task is to create the strong models to estimate the excitation current of SM.

Data Set Characteristics:  

Multivariate

Number of Instances:

557

Area:

Computer

Attribute Characteristics:

Real

Number of Attributes:

5

Date Donated

2021-04-21

Associated Tasks:

Regression

Missing Values?

N/A

Number of Web Hits:

717


Source:

Ramazan BAYINDIR (bayindir '@' gazi.edu.tr);Hamdi Tolga KAHRAMAN (holgakahraman '@' ktu.edu.tr);


Data Set Information:

Synchronous machine data were obtained in real time from the experimental operating environment.


Attribute Information:

Iy (Load Current)
PF (Power factor)
e (Power factor error)
dIf (Changing of excitation current of synchronous machine)
If (Excitation current of synchronous machine)


Relevant Papers:

1) Kahraman, H. T. (2014). Metaheuristic linear modeling technique for estimating the excitation current of a synchronous motor. Turkish Journal of Electrical Engineering & Computer Sciences, 22(6), 1637-1652.

2) Kahraman, H. T., Bayindir, R, & Sagiroglu, S. (2012). A new approach to predict the excitation current and parameter weightings of synchronous machines based on genetic algorithm-based k-NN estimator. Energy Conversion and Management, 64, 129-138.



Citation Request:

1) Kahraman, H. T. (2014). Metaheuristic linear modeling technique for estimating the excitation current of a synchronous motor. Turkish Journal of Electrical Engineering & Computer Sciences, 22(6), 1637-1652.

2) Kahraman, H. T., Bayindir, R, & Sagiroglu, S. (2012). A new approach to predict the excitation current and parameter weightings of synchronous machines based on genetic algorithm-based k-NN estimator. Energy Conversion and Management, 64, 129-138.


Supported By:

 In Collaboration With:

About  ||  Citation Policy  ||  Donation Policy  ||  Contact  ||  CML